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HEAT TRANSFER FOR LAMINAR SLIP FLOW OF A RAREFIED GAS IN A
PARATIFL-PLATE CHANNEL OR A CIRCULAR TUBE WLTH
UNIFORM WALL TEMPERATURE
by Robert M, Inman

Lewis Research Center

SUMMARY

An analysis has been made to determine the effects of low~density phenom-
ena on the heat-transfer characteristics for laminar flow in a parallel-plate
channel or in a circular tube with uniform wall temperature. Consideration is
given to the slip-flow regime wherein the major rarefaction effects are dis-
played as velocity and temperature jumps at the condult walls. The results
apply along the entire length of the conduit. The solutions contaln a series
expansion, and analytical expressions for the complete set of eigenvalues and
eigenfunctions for the problems are presented. The results give the tempera-
ture of the gas adjacent to the wall, the wall heat flux, and the Nusselt num-
bers for the conduits for various values of the rarefaction parameters.

INTRODUCTION

In recent years considerable interest has developed in the study of the
heat-transfer characteristics of rarefied gases flowing inside conduits. This
interest in the rarefied gas mode of heat transfer has been spurred by the ad-
vent of high-altitude flight and by the low-density enviromment that is being
encountered with increasing frequency in present day technology. Under the
conditions of high-altitude flight, for example, the gas flow inside a conduit
may be sufficiently rarefied so that the appropriate mean free path becames too
large for the use of the usual continuum-transfer equations but not large
enough for free-molecule or transitlon concepts to apply-

In this regime of slight gas rarefaction, termed the slip-flow regime,
which is the gas regime considered in this investigation, the gas adjacent to a
solid surface no longer assumes the velocity and temperature of the surface.
Instead, the gas slips along the surface, and, in addition, there is a Jjump in
temperature between the surface and the adjacent gas. The effects of these
rarefaction phenomena on the heat-transfer characteristics for laminar flow in-
side ducts and tubes are of practical interest to the engineer concerned with
the design and analysis of compact heat-exchange equipment for high-altitude~
flight or low-density-environment applications.



Two geometries that are commonly encountered in practice are selected for
analysis, the parallel-plate channel and the circular tube. A uniform-wall-
temperature boundary condition is considered. There are many practical situa-
tions that require the design and analysis of apparatus for heating or cooling
a gas flowing through a conduit with the conduit walls maintained at a constant
temperature, for example, flow through compact heat exchangers where one fluid
is at constant temperature because of a change of phase or flow through heat
exchangers where the capacity rate of the gas is so much lower than that of the
other fluid that an essentially constant wall temperature i1s attained.

The heat-transfer characteristics of slightly rarefied gases flowing in-
side a parallel-plate channel or inside a circular tube have been considered in
three previous papers. In reference 1 the effects of slight rarefaction on the
fully developed heat-transfer characteristics for laminar flow in tubes were
studied analytically. The analysis was carried out for both uniform wall heat

flux and uniform wall temperature.

In reference 2 the effects of second-order terms on the veloclty and tem-
perature jumps at a wall were obtalned by a physical derivation, and the re-
sults were used to determine the fully developed heat transfer in a tube with
uniform wall heat flux.

The results of the foregoing analyses are limited to the region where the
temperature distribution is fully developed, and, hence, the solutions do not
apply in the thermal entrance region. Reference 3 contains an analytical study
of the effects of slight gas rarefactlion on the heat-transfer characteristics
for fully developed laminar flow in a parallel-plate channel or in a circular
tube with a uniform wall heat flux. The results obtalned for both geometries
are applicable along the entire length of the conduit, that is, in the thermal
entrance region as well as far downstream. The solutions contain a series ex-
pansion that arises in connection with the entrance-region heat-transfer analy-
sis, and analytical expressions for the eigenvalues and constants are pre-
sented. Numerical solutions of these important quantities are also obtained
through the use of an electronic (IEM 7094) computer , and comparisons are made
that show very good agreement between the two methods of computation.

The present investigation is concerned with laminar flow of an incompress-
ible, slightly rarefied gas 1n a parallel-plate channel or in a circular tube
with uniform wall temperature. For the uniform wall-~temperature problem, a
knowledge of the eigenfunctions and eigenvalues is not only necessary in the
entrance region but also in the fully developed region (at least the first
eigenvalue is necessary in the fully developed region). The flow between the
parallel plates or in the tube is assumed to be fully developed. This implies
that a hydrodynamic entrance length is present that allows the gas to establish
a fully developed velocity distribution before reaching the heated section of
the conduit. In addition, the assumption implies that the thermal creep veloc-
ity, which is an additional velocity induced when a gas adjacent to a surface
encounters a temperature gradient along the surface (ref. 4), can be neglected.
The solutions without the inclusion of thermal creep will then represent the
zeroth-order solutions with regard to this effect.

This assumption, however, allows the velocity field to be determined inde-
pendently of the temperature (whereas the temperature field is a function of
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the velocity), and it is belleved that the understanding gained wilill lead to
more precige and more extenslve study.

The parallel-plate channel is considered filrst, and two cases of practical
interest are examined: a step change 1n wall temperature at both plates and a
step change in wall temperature at the upper plate only, while the lower wall
is insulated. The circular tube conflguration is then analyzed for a step in
wall temperature. The results obtained for both geometries are applicable
along the entire length of the passages.

Before the energy equation can be solved, the gas velocity distribution
must be known. This has been investigated in reference 3 for the parallel-
plate channel and in references 1 and 4 for the circular tube, and the results
will be used in the present study.

With the velocity distributions known, the energy equation can be consid-
ered« The solutions involve series expansions, and analytical expressions will
be derived for the elgenvalues and constants as functions of the gas rarefac-
tlon parameters.

RARFEFIED GAS FLOW IN A PARATLIEL-PLATE CHANNEL
WITH STEP CHANGE IN WALL TEMPERATURE

This portlion of the analysis is concerned with fully developed laminar
flow of a slightly rarefled gas between parallel plates as illustrated in fig-
ure 1. For x < 0, the plates
and the gas are assumed to be
isothermal at temperature tg;

— —tw — — tw
. v _J_ whereas for =x > 0, the wall
_%T B WO T %i. y oL (both the upper and the lower,
wy _ uty 3 ox or else the upper only with the
[— Insulated lower wall insulated) tempera-
wall ture is step-changed to a new
(a) Symmetry number, 2, {b) Symmetry number, 1. value ty. (All symbols are

Figure 1. - Physical model and coordinate system for parallel-plate channel, defined in appendix A.)

Energy Equation

The energy equatlon for incompressible flow in a parallel-plate channel
can be written as

az‘t (l)

To obtain the equation in this form, viscous dissipation and axial heat conduc-
tlon are neglected compared with heat conduction in the transverse direction.
It is convenlient to place the plane y = O at the plane of symmetry, that is,
at the middle plane of the channel in case of a step change in temperature at



both walls (fig. l(a)) and at the lower wall in case of a step in temperature
at the upper wall only (fig. 1(b)).

Both cases can be included in the following development by defining a sym-
metry number o, which is also the number of walls step-changed in temperature;
that is, 0 = 2 1if both wall temperatures are changed, and o =1 1if only the
upper wall temperature is changed, the lower wall being insulated.

It is also convenient to rewrite equation (1) in terms of dimensionless
variables; then equation (1) is given as

2
o (2)

£(n) g%— =57

The dimensionless velocity distribution f(n) is obtained from reference 4 and
is different for each value of 03

\
% (1 - 12 + 4A)
f (3)
6(n - 2 + A
f(n) = (ﬂl +n6k ) for o=1 )

where A = gu/ZL. The velocity-slip coefficient §,, has been related by Max-
well to other properties of the system by the expression (ref. 5)

£, = E=E (4)

where g 1s the specular reflection coefficient and 11 is the mean free path
]J-/R—'E

The relation between the average veloclty and the slip velocity may be obtailned
from equation (3) by setting n =1

for o= 2,1 (8)

The dimensionless temperature T dis defined so that at the entrance of the
heated section the value of T is unity.

Solution

Equation (2) is to be solved subject to the boundary condlitions
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T =1 at t =0 for all 7 (entrance condition)

St (7)
3 = 0 at n = 0 (symmetry) _

Another effect of the gas rarefaction enters through the boundary condition at
the channel wall, which permits a Jjump between the wall temperature t, and
the adjacent gas temperature tg, (ref. 5)

£t <8t

t. - b = £ ¢t >0 (8)
Sﬁ>n=l oxr

g - w= 9%

where £t denotes a temperature-jump coefficient, related to other properties
of the system by the expression

_2-a 2y U
s = "= Y+ 1 Pr . (9)

The solution of equation (2), which will satisfy conditions (7) and (8),
can be found by using a product solution that leads to a separation of vari-
ables. Then the solution for T can be written as

t -t
T= te - XW = E bnYh(n)eXP<'BnC) (10)
n=0

where the Y, and B, are the elgenfunctions and eigenvalues of the Sturm-
Liouville problem

ay,
= + Bpf(n)Y =0 for o= 2,1 (11a)
dn
with the boundary conditions N
ay.
n
an - 0 at n =20

r (11p)

dy,
1) = o 2 (d—n>
i n=1
J

The solutlon of equation (lla) wlll be taken up shortly.

The coefficients bn also remain to be determined. These are evaluated
to satisfy the condition at the entrance of the channel (Q = 0)



1= Z by ¥n(n) (12)

Using the properties of the Sturm-Liouville system results in

1
J/F £(n)¥,(n)dn
0

b, = for o= 2,1 (13a)

n 1
‘//. £(n)¥2(n)dn
o

As shown 1n detail in appendix B, the integral appearing in the numerator may
be written as

©

]
1 dYn)
{n)Y, an = - =— | =—
(n)¥,(n)an B (dn . (13b)
0
whereas the denominator of equation (13a) becomes
1
2 ay.
2 _ oY EE_ oY n
£(n)Ys(n)dn = <5§ + 03T B T (13c)
n=1 =1
0 B=Bn
Then the series coefficients are
by = - = 5N for o= 2,1 (14)
8 (X4 g £t 9%
2\ " 2L o B/

B=B,

This result implies that, once the eigenfunctions Y, are known, the coeffi-
cients b, of equation (10) may be calculated. Thus, it is apparent that a
knowledge of the eigenvalues and the eigenfunctions of equation (1lla) is essen-
tial to the temperature solution (eq. (lO)). The possibility of determining
these quantities analytically 1s one of the Interesting aspects of the problem.
The functions Yh(n) and the corresponding eigenvalues Bn are as yet undeter-
mined. Before a calculation of these quantities is undertaken, however, the
analysis will be extended to the formulation of several quantities of engineer-

ing interest.

From the temperature distribution (eq. (lO)), several quantities of engi-
neering interest can be determined: +the axlal variation of the gas temperature
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adjacent to the wall, the wall heat-flux variation along the channel length re-
quired to maintain the wall temperature constant, and the local Nusselt number
variation.- The axial variation of the gas temperature adJjacent to the wall is
obtained from equation (10) by setting 71 = 1 therein. In the absence of a
tempersture jump (gt =-O), it 1s apparent, eilther from equation (8) or from the
second part of equation (llb), that t, = constant = t,;. With a temperature-
Jump effect, however, tg % toge The heat flux at the wall can be evaluated
from Fourier's law

oT
a= K(B;) _ = K(te = tw) 'é% (Fn)n___.l (15)

where ¢q dis defined as the heat added at the wall. Applying this to equa-
tion (10) gives the result for the wall heat flux as a function of position
along the channel:

2L =
— ay.

W e T] T]=l
n=0

The Nusselt modulus may be defined by referring either to the hydraulic
diameter Dy, equal to 4L, or to a thermal dlameter Dp, which depends on the
area of the heating surface and in the present case is equal to 8L/0 (ref. 6).
The latter definition willl be adopted here, so that

2L

npp 5 %
Mo = === K(ty, = tp) (a7)
Substituting q from equation (16), the Nusselt modulus may be written as
[e0]
t, = T ay.
W e n
Nu = -4 bn( ) exp(-Bpt) (18)
A G n

n=0

To put this in a more useful form, it is necessary to develop an expression for
(ty - te)/(ty - tp)- To do this, 1t is necessary to know the bulk temperature

Tys which may be found from
1
J/P uT dn
0

., - T

t., - b 1
W
efudn
0

Ty,



1 .
sz.of T(n)dn (20)

By introducing the temperature distribution (eq. (10)) into the bulk tempera -
ture (eg. (20)), the following is obtaineds:

- 1
by - b
H'-’ Z by, exp(-Bpt) / £(n)¥y(n)an (21)
W e n=0 0

The integration has been carried out in equation (B2) with the result

1
ay.
£(n)Y(n)an = - L (—n>
0
With this, equation (21) becomes
00
t, -t b (dY)
W b n n
A = (== exp(-B,t) (22)
tw - Te By \dn =1 o
=0

By substituting equation (22) in equation (18), the expression for the Nusselt
modulus becomes

oo

dyY.
42 bn(.dﬂ_n)'r]:l eXP( 'Bng)

Mo = —2=2 — (23)
z : by dYn>

This completes the formulation of the equations ylelding the important
engineering quantities. Before numerical values of these quantities can be
obtained, it is necessary to obtain the solution to equation (11a). It is
clear from equations (lla) and (llb) that a different set of eigenvalues and
eigenfunctions will be obtained for each palr of the rarefaction parameters

£,/2L and & /2L,




Transverse Distribution Function Y(n)

Attention is now directed to the Sturm-Liouville eigenvalue problem
(eg. (11a)). The function Y(7n) is the solution of this equation, subject to
the boundary conditions (eq. (11b)) and the customary normalization convention
Y(0) = 1.

For convective heat transfer in lamlinar continuum channel flow, Dzung
(ref. 6) and Sellars, et al. (ref. 7) have obtained asymptotic expressions for
the eigenvalues and eigenfunctions through the use of the WKB method. A brief
discussion of the WKB approximation and its application to the solution of
eigenvalue equations in guantum theory may be found in reference 8. Asymptotic
formulas for the eigenvalues and eigenfunctions for laminar heat transfer to
slip flow in a parallel-plate channel with uniform wall heat flux have been
derived in reference 3 by applylng this method. The results were found to be
in good agreement with numerical solutions obtained in the course of the in-
vestigation. Hence, it is of interest to apply this method to the present
problem.

In accordance with the method of references 6 and 7, a solution of the
following form 1s considered

Y(n) = exp[m(q)] (243)
where '
m=-\/§mo+ml+r-n£-+-” (24b)
B

and, since B 1is assumed to be large, only the first two terms of the previous
series are retained. Then it can be shown that the asymptotic solution of

equation (1la) is given by
Tl
an| + B exp|-1 -,/Ef £(n)“ an
0 J

y
Aexp‘iﬁ/g‘/‘ £(n)
L 0
1
Z

where the coefficients A and B remain to be determined. It is noteworthy
that, for continuum flow (A = 0), a singularity exists in equation (25) at
=1 for o0=2 and o0 =1, since Ef(li]x_o = 0, and also at 71 =0 for

I
NV

Y{(n) = for o= 2,1
£(n)

(25)

o =1, since [f(oi]X=o = 0. This behavior has required the development of al-

o=1
ternative solutions, valid near m =0 and 7 =1 (refs. 6 and 7). For slip



1 |- [N ' . e = - - S - — - .
A

flow (A 74 O), the functions £(n) are nowhere zero, and hence equation (25)
has no singularities for slip flow. The accuracy of the approximation, how-
ever, (at least for the first few eigenconstants) , might be expected to dimin-
ish as the slip velocity ug approaches zero, since the effect of the singu-
larity for wug = 0 will undoubtedly come into play. Conversely, as the slip
velocity increases from zero, equation (25) should become an Increasingly more
reasonable approximation of the actual equation, especially as B, becomes
large. Since it is anticlpated that the coefficilents A and B are differ-
ent for the cases 0= 2 and 0= 1, each case will be considered separately.

For the case o = 2, the coefficients A and B are determined from the
continuation of equation (1la) to the channel central zone 1 = 0, where Y(n)
can be approximated by the cosine function and the conditions Y(0) = 1 and
(a¥/an)pg = O are satisfieds

Y(n) = cos ~/Bf{0) 7 for 12 << 1 (26)

where £(0) = u,/T = (3/2)[(1 + 47)/(1 + 6A)]. Thus it is found that, to make
equations (25) and (268) equal for small mn, it is required that

A=B= [f(o)]l/4/2. Using this result and the first part of equation (3)
glves

Wn) = (1 + 41 + o - 02)" M cos(/F 1) (27)
and
Toyi(n) =% 1+ )41+ an - n2)/

dn

5\1/2 s/2
= A - 02 sin
x |n cos(+/B I) - 2§2) il ") VBT , Sﬁ I)

I(1 + 6A) /2

(28)
where
4 1/2
I= ()2 an - (2)1/2 mrer - o % j;iSin{LL1-+ Zk);:é]
(1 + 8n)

(29)
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The values of the function Y and its slope dY/ dn at the upper wall are
found by setting n = 1 in equations (27) and (28), respectively; the results
are

4 .
Y(1) = (%)l/ cos B (30)
y / 2(§)1/2(47\)3/ Z 5 sin
ay 1 1/4, . \-5/4 2
(E)T]:l =3 (1 + an)7(aN) cos & - " 67\)1/2 (31)
where
5 = +/p I (32)
and
" /
(an)M? & (1 + 4:?\)sin'l[ L -|
- 1/2 1/2 ) 1/2
n=f mY?a- ()" ——— o (2 ap) ] (33)
0

The elgenvalues are determined by the requirement Y(l) = —Z(E,t/2L)(dY/dn)n=l.
Then, with equations (30) and (31) combined in accordance with this relation,
the eigenvalues are obtained as roots of the characteristlic equation

inf— L
m +- (-l + 4A\)sin <m>
ar(4))3/2

5, tan &, = (4A + T)

= E (34)

where E, for given values of A and T, is a constant. The first five roots

of equation (34) are given in reference 9 for a number of values of E. The

values of I for any given slip velocity us/ﬁ are shown in figure 2. The
eigenfunctions corresponding to these

Lo elgenvalues will be denoted by Yn.
gf"g ) | =] It can be seen that the eigenvalues
P | (and hence the eigenfunctions) depend
EST @ : on the two rarefaction parameters
I0E | \ £./2L and E/2L, as previously
33 © ’ noted. This result differs from that
S& .9 , . - 0 obtained for the uniform-wall-heat-

0 .2 . . . .
Ratio of slip to average velocity, uSIU fJ._u_'x problem (ref: 5)’ Whel_'e the
e of definite intearal el-olat eigenvalues and elgenfunctions were
Figure 2. - Value of definite integral for parallel-plate
ghannel for any value of ratio of slip to average ve- dependent only on the par ameter
locity. £,/2L.
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To obtain the series coeff1c1ents by (eq. (14)), it is necessary to eval-
uate the terms (BY/SB)n_l and (% Y/ BB)n —7 + These expressions are deter-

B=B, B=p,
mined by differentiating equatlons (30) and (31), respectively, with respect
to P. The results may be written as

(5Y> (1 + 4%)1/4 E cos &, ( )
= 35a
B e (N 2,
B=p,
AN + TY(E + 82
32y (1 + 4x)1/4[% + ( ;i n)]cos By )
= - — 35b
EB 57] n=1 4:13‘]1(4?\)5/4: (
=B,
Thus, the coefficients b, as evaluated from equation (14) are given as
1/4
8A(4A) (36)

'bn= ..... P - I
1/4 8%
(an + T)(1 + 4)N) E+ 1+ ﬁ? cos By

The slope dX/dn evaluated at the wall, given by equation (51), can be alter-
natively expressed as

(37)

(th) (1 + 4%)1/4 cos &,
M =1 (an) /% zr

It 1s convenient to define a new coefficient B, given by the product of b
and (dY/dn) n=1’ as

dyY.
B, = bn<-—9> = AN , (38)
dn =1 o .
= T(4N + T)E + 1 + j?

Equations (30), (34), and (38) can be used to calculate the constants
Yh(l), elgenvalues Py, and coefficlents B, for given values of gu/ZL and
§t/2L' In the interests of a unified presentation of results, however, such
calculations will be delayed until after the unsymmetrical case o0 = 1 has

been treated.

For the unsymmetrical case, the formal asymptotic solution (eq. (25)) 1
first continued to the insulated wall 7 = O, where again 7Y(n) can be

12




approximated by the cosine fumction

(1) ~ cos[~/BE(0) 1] for 1% << 1 (26)

The coefficients A and B are readily determined to be A =B = Ef(O)]l/4/2
so that

¥(n) = M/4(n - 12 + )L/ cos(~/F 3) (39)
and
3/2 5 /5 3 sin(~/F 3)
(l Zn)cos(-\/— J)+4(n nZ+A) sin J
%%=-Nv40r4F+4xy5/ —— J /I + BN
(40)
where

T] e ————
J = / f(ﬂ)l/z an =J§- A+ (27 - 1).\/11 -2 + A
0

sin'l<ii%:—§ﬂ—> - sin'l(———g;———>
. ~/1 + 4N AN
- (1 + 4N) —

2

(41)

The function Y and its derivative dX/dn are evaluated at the upper wall by
setting 71 = 1 in equations (39) and (40), which results in

Y(1) = cos ¢ (42)

3/2
—cos € + AN 1/5 € sin €

(g)n T T (43)

-1 ) T 4N

where

c = -JB— Jl (44)

and

13



1/2 cip-1 1
.. 2 an (§>1/2 (4A)7% + (1 + 42) ;n ey
1 8 (1 + en) /2
0
=1, (45)

The eigenvalues for the present case (o = 1) are determined by the requirement
that Y(1)= -(gt/ZL)(dY/dn)nzl. Then, by combining equations (42) and (43) in
accordance with this requirement, the eigenvalues B, are obtained as roots
of the characteristic equation

M + (1 + 47\)sin'l<-—-———-,li47\>

(ar o) ar(an)3(2 o

Il

€n tan ep

Il
|

(46)

0
B

where €p = ~/B, Jq-

The expressions (BY/BB)T]____]_ and (BZY/BB Bn)nzl, necessary for the eval-
B, PPy

uvation of the coeffilcients b,, can be obtained readily from the equations de-

veloped so far as
dY F cos €
&) = e

p=B,

(41 + D)(F + €E)

F + —
aZY ==-CO0S € ¥T — (4:7b)
B on =l n 8N,
B=B,
The seriles coefficients b, are thus given by
8A ) (48)

by = >
€n
(4N + I‘)(F + 1+ T)cos €

Equation (43) can be recast into the form

14



TABLE I. - EIGENVALUES AND CONSTANTS FOR SLIP FLOW IN CHANNEL WITH UNIFORM WALL

VBT 1.431
VB2 4.321
VB3 7.265
VB; 10.28
Y1(1) .2163
¥,(1) -.6028
Y5(1) .8508
¥,(1) -1.0195
Yi(1) -.8120
¥vi(1) 2.265
Yé(l) -3.295
¥i(1) 3.820
by .6475
by -.1968
bz .1059
by -.0654
"N 1.498
VB, 4.520
VB3 7.545
VB, 10.58
Y4(1) .0872
Y2(1) -.2419
Yz (1) .3827
Y4(1) -.5000
vi(1) -.6545
¥5(1) 1.811
¥5(1) | -2.869
¥, (1) 3.750
by .8575
bo -.2942
bz .1691
by -.1140

0.1333

1.168

4.083

7.085
10.14

.2926
-.6917
.9340
-1.0823

-1.098
2.594
-3.503
4.060

1.177

-.2526
.1164

-.0669

1.376

4.394

7.435
10.50

.1300
~-.3907
. 5267
-.6262

~1.425
2.931
-3.951
4.697

1.228

~.3412
.1829

-.1178

Ratio of slip to average velocity, ug/u

1/3

Temperature~jump coefficient, £./2L

0.

Analytical Numerical’ Analytical

1.289
4.010
6.906
9.945

.4045
- 9410
1.185

-1.264

-.3795

.8835
~1.110
1.185

.4930
-.1324
.0575
-.0312

1.420

4.295

7.225
10.23

.1651
-.4540
.6561
-.7660

-.3200

.8500
-1.230
1.438

. 6299
-.1910
.0986
-.08605

5333

Solution

Symmetry number, 2

0.8128
3.630
6.682
9.79%4

.6358
-1.082
1.227
~1.293

-.5961

1.014
~1.150

1.213

1.096

~.1257
.0438

-.0218

1.111
3.705
6.645
9.700

.5320
-1.019
1.123
~-1.151

-.6645

1.270
-1.408

1.440

.7085
-.1510
.05860
-.0227

Symmetry number, 1

1.048

3.933
6.966

10.05

-4984
-.7767
.8696

-.9137

~.9345

1.456
-1.631

1.713

1.147

-.2032
.0852

-.0469

1.295
4.005
6.900
9.905

.2790
-.6626
.8387
~.9272

~.6975

1.658
-2.099

2.268

.8720
~.2399
.1065
~.0582

0.9087
3.602
6.586
9.661

.5767
~1.018
1.120
~-1.153

-.7208

1.270
~1.400

1.442

1.124

-.1635
.0570

-.0278

1.136
3.904
6.844
9.872

4206
-.7503
.8740
-.9063

~1.052
1.876

~2.185
2.318

1.180

-.2508
.1063

~.0570

3/5

Numerical' Analytical | Numerical lAnalytical

0.8750
3.451
6.475
9.581

.7640
~1.135
1.173
~1.180

-.2388
.3550
-.3665
.3692

.3639
-.0507
.0157
~.0073

1.092
3.675
6.625
9.680

.4648
-.8669
.9563
-.9782

-.2900
.5400

-.5975
.6115

.3950
~-.0815
.0294
-.0144

TEMPERATURES

Numerical

0.5273
3.337
6.417
9.541

.8506
~1.124
1.164
-1.176

-.2658
.3534
~.3635
.3674

1.044

-.0554
.0154

-.0073

0.7149

3.529
6.565
9.648

.7550
-.9491
.9788
-.9886

-.4722
»5932
~.6118
.6183

1.0766
-.0992

.0330
-.0161
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dY) cos €,
ey = - —F (49)
(dn =1 r

so that

ay) 8A
B b(—) = - (50)
i

B=p, (4N + I‘)(F + 1+ =

Equations (30), (34), and (38), for o = 2, or equations (42), (46), and
(50), for o =1, in conjunction with figure 2 (p. 11) contain all the informa-
tion essential to the determination of the variation in the gas temperature
adjacent to the wall (eq. (lO)), the wall heat-flux variation (egq. (16)), and
the Nusselt modulus (eq. (23)) along the length of the channels. These expres-
sions for the eigenvalues, elgenfunctions, and coefficients are remarkably
simple In form and lead to relative ease of computation. The level of accuracy
of the expressions remains to be determined.

The first four eigenvalues and important constants are given in table I
for several different values of the parameters us/ﬁ and gt/ZL for the cases
of a step change in temperature at both plates, o = 2, and at the upper plate
only (while the lower wall is insulated), o = 1. The particular numerical
values chosen for uS/H and §t/2L correspond to values for the rarefaction
parameter { ~/Ryt/2pl, of 0.0667 and 0.2,

T = 1.4, Pr = O.%S, g =1, and a =1 and 0.4.
Although the value of 0.2 for the rarefaction
FICIENTS FOR CONTINUUM FLOW IN parameter may be outside the slip-flow regime,
PARATLEL-PLATE CHANWEL WITH 1t has been included since at lower densities,
in the beginning of the transition regime, prior
findings suggest that slip-flow solutions may

TABLE II. - ETIGENVALUES AND COEF-

UNIFORM WALL TEMPERATURE

[Data from ref. 6.] remain fairly good. Results for us/ﬁ = 1
(slug flow) would definitely be outside the
Symmetry number glip-flow regime, since for us/ﬁ'z 1, Z/ZL — o,
> 1 The results for continuum flow
(£,/2L = £./2L = 0) are given in table IT and
VEL 1.372 1.557 were obtained from reference 6.
\/EE 4.825 4.855
VEs 7.89 8.14 To check the level of accuracy of the slip-
N 11.16 11.40 flow results, equation (11a) was solved numeri-
cally, by the Runge-Kutta method, on an IBM 7094
digital computer. The forward integration was
-By 1.708 2.167 started by using the boundary condition
-Bp 1.138 1.434 (eg. (11b)) at n = O and the normalization
-Bs 951 1.193 convention Yh(O) = 1. The eigenvalues were
-8, 848 1. 064 found by trial and error until the second bound-
| ary condition of equation (11b) was satisfied

at n =1l. The first four eigenvalues and con-
stants are given in table I for the same choice
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of slip-flow parameters.

The analytical expressions presented herein were derived on the assumption
that B, is large and, hence, are valid only in that limit. There is, how-
ever, substantial agreement between the relevant quantities computed from the
analytical expressions and the numerical solutions even for values of n as
low as 3. Although the agreement is good for \/82 when us/ﬁ = 5/5 and fair
for Y¥5(1), ¥4(1), and b, it is only fair for ~/B; when u /¥ =1/3 and
somewhat poor for the other quantities. Thus, the extent of agreement depends
on the parameters us/ﬁ and ¢& /ZL, the best agreement being at low values of
gt/ZL and higher values of ug/u. It is evident from these comparisons, how-
ever, that the analytical expressions presented here have definite application
to determining the higher eigenvalues for laminar heat transfer in channels
under slip-flow conditions,

With the numerical information in tables I and II, the variation of the
temperature of the gas adjacent to the upper wall along the length of the chan-
nels has been evaluated from equation (10) by setting n = 1, and plots are
given in figure 3 for o =2 and 1.

In the absence of rarefaction effects, the difference between the surface
temperature t,, and the contiguous gas temperature + is zero along the
entire length of the channels. With rarefaction, the %emperature difference
tg - ty has nonzero values, decreasing from te - ty with Increasing distance
from the heated section entrance. The effect of an increase in rarefaction is
to increase tg - ty; toward the maximum difference 1t - ty; at any given

axial location. The direction of this effect is physically reasonable, since

A'ccomr'nodati'on
] J. coefficient,
a

L0 —|—Rarefaction —| - 1
L N parameter, _J e 4 Rarefaction
§ ~- R A S ~——parameter, —
B \ T+~ <L _]o.2 I ®
B 8\ == \ I R - 0.2
2 . \\ T == —-
= NS
S - N ~d
E.} \ =1 \ ~
15 |c|.> 6 \\ ~|— B 0667— \\’\\_
a-.g} \\ E" — — \‘ - - oe7_|

T~ i ety
s Ea— \\ —
S5 4 \ } — .2
Eo
f g \\ ) \\
: \\ \
3 .07 I
= 2 1. 0667 —
k=) R S
2
@
E 0 (Clontinluum low) 0 (C'ontinluum Tow)
0 .02 .04 .06 .08 10 0 .04 .08 12 .16 .2
Dimensionless axial distance, (x/2.)/RePr
(a) Symmetry number, 2. (b} Symmetry number, 1.

Figure 3. - Variation of gas temperature adjacent to wall for flow in parallel-plate channel, Specular reflection coeffi-
cient, 1; ratio of specific heats, 1.4; Prandtl number, 0.73.
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the temperature jump can be consldered as an effective thermal contact resis-
tance at the gas-surface interface. The value of the accommodation coefficient
also has an important effect on the variation of tg - t, with axial distance,
and this is associated with the increase in temperature-jump effect with a de-
crease in accommodation coefficients. For both wall-temperature-change situa-
tions, the temperature difference T, - ty varies significantly over approxi-
mately the first 10 percent of the dimensionless distance considered and then
varies more slowly over the remaining distance. This result suggests that the
thermal creep velocity, which has been neglected in the present investigation,
would have its greatest effect.concentrated in the region (X/ZL)/ReET < 0.01
for o= 2, or (x/2L)/RePr < 0.02 for o= 1.

The wall heat-flux variation required to maintain the wall temperature
constant has been evaluated from equation (16) by using the data of tables I
and II and has been plotted in figure 4 for o =2 and l. An increase in gas
rarefaction and/or a decrease in the value of the accommodation coefficlent
produces a decrease in the heat~flux requirement, at a given axial position,
over that for continuum gas flow. This is reasonable, since the thermal con-
tact resistance effect of the temperature Jjump tends to overpower the decrease
in thermal resistance associated with velocity slip (especially if the accommo-
dation coefficient has a lower specified value) and thus increases the resis-
tance to heat transfer to the gas from the wallj consequently, the wall heat-
flux requirement decreases. The wall heat-flux requirement, at a given axial
position, however, is slightly greater for the channel with a wall temperature
change at the upper wall only than for the channel with a step change in tem-
perature at both walls.

The variation in local Nusselt number along the channels can be evaluated
from equation (23) and from the numerical information in tables I and IT. The
fully developed heat-transfer condition occurs for x/ZL sufficiently large so

5 E 1 i I 1
‘ Accommodation
coefficient, —
a
4 - - 1 —
. \ Rarefaction ———— 4
-2 parameter, * |
.; © Rarefaction
§ 3 | [ parameter,
3 \O(Cont nuum flow) °
N N ' Y (O
< \ 0 (Continuum flow
= 2 ~._ .
] 0667 I \\
£ \\ - \\h\ %667 \\\\
—_ T .
g S I -yt s A N N O gyt I g e S
1 L0667 T~ —— ~F — L 0667 < — T T
T T T T T T 2 e e e e O

0 .02 .04 .06 .08 1000 .04 .08 .12 |16 .20
Dimensionless axial distance, (x/2L)/RePr

(a) Symmetry number, 2. (b) Symmetry number, 1.

Figure 4. - Variation of wall heat flux following step change in wall temperature for slip flow in parallel-plate channel.
Specular reflection coefficient, 1; ratio of specific heats, 1.4; Prandtl number, 0.73.
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that only the first term of the series need be considered. Then the fully de-
veloped Nusselt number follows as the simple expression Nug = 4B3. Fully de-
veloped Nusselt numbers thus obtained have been plotted in figure 5 as a func-
tion of u 1/Rgt/2pL in the form of & ratio (Nu/Nuo)d, where Nup represents

the continuum value 7.53 for o= 2 or
L - 9.70 for o0 = 1. The effect of gas
A?Z@g%ﬂwnﬁj rarefaction is to decrease the value of
T a | the Nusselt number below its continuum
S 1 — value, and the reductlon increases sig-
_—— .4 nificantly with increasing mean free
path. It is noteworthy that the effects
8N S— of gas rarefactlon are more pronounced
\\::?\\\ Symmetry in the channel with both walls step-
— number, changed in temperature than in the chan-
nel with a change in temperature at the
~ 1T upper wall only. The effect on the
NN \\\\\\ Nusselt number of the specified value
4 | - of the accommodation coefficient is evi-
N Ok dent.

7/
7

.

//

[/
/

= The variatlon in Nusselt number
7 along the channel with a step change in
wall temperature at one or both walls
has been evaluated and plotted in filg-
0 .04 .08 .12 .16 .20 6 Th ffect of th £
Rarefaction parameter, uwfﬁE/ZpL ure be € ellect o € gas rareiac-
. . tion is always to decrease the Nusselt
Figure 5. - Fully developed Nusselt number ratio for flow it +1 1 "
in channel at uniform wall temperature. Specular re- number below its contlinuum value a
flection coefficient, 1; ratio of specific heats, 1.4; every position along the heated length.
Prandtl number, 0.73. It is interesting to note that the
Nusselt number variation for both o = 2
and o0 = 1 exhibits trends similar to those observed for channels with uniform
wall heat flux at one or both walls (ref.‘S). The values of Nu for uniform
wall temperature, however, lle somewhat lower than those for uniform wall heat
flux for both o =2 and o0 = 1, with differences becoming negligible for
higher values of U 1/Rgt/2pL and lower values of a.

Fuily developed Nusselt number ratio, (Nu/Nugly
z

RAREFIED GAS FLOW IN A CIRCULAR TUBE WITH STEP
CHANGE IN WALL TEMPERATURE
Attention is now directed to the fully developed laminar flow of a slightly
rarefied gas through a circular tube as illustrated in figure 7. For x <O
the tube and the gas are assumed to be isothermal at temperature 1, whereas

for x >0 +the tube i1s step-changed to a new value of t.

The energy edquation analogous to equation (l) is

ga; rTit (s1)

c
1o,
AN&
I
H(Q
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Y—

A}:co mn'mdaﬁ.on \ ’

- coefficient,
a
2 1 Rarefaction -
_— 4 parameter,
|
10 N 0 (Continuum
Rarefaction ontinuum flow
parameter, =
= A B
g 8 — . L0667 T —F——
E 0 {Continuum flow
c
s
g 6 ] —_
z 0667 =~ 2
S e i
4 ~1 | ]
= . 2
0667 e ———|r |
2 7
S S T e
0 .02 .04 .06 .08 .10 0 04 .08 .12 .16 .20

Dimensionless axial distance, (xléL)IRePr
(a) Symmetry number, 2. (b} Symmetry number, 1.

Figure 6. - Variation of local Nusselt number along channel for uniform wall temperature. Specular reflection coeffi-
cient, 1; ratio of specific heats, 1.4; Prandtl number, 0. 73.

This is rewritten in terms of dimensionless variables to yileld

2f (w) %T = % 350_3 (a) %T) (52)

The velocity distribution, slip velocity, and average velocity have been given
in reference 1. The use of these expressions leads to the dimensionless veloc-

ities u/U and us/ﬁ as

0 A
U Lp Lo 40
f=f(‘°)“2 T+ 86
> for © =t /a (53)
Us 86
= = (1) = ——Ze

Equation (52) is to be solved subject to boundary conditions similar to
those specified for the parallel-plate channel

— il T=1 at ¥y =0 for all w
L - L, X - /\ ( 54:&)
Lutr) or
— \\5,// 35 = 0 at =0 for ¥ =20
%, w
Figure 7. - Physical model and coordinate system for circular and

tube.
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(1) = -2 %—(%—i)ﬂhl at w=1 (54b)
Equation (54b) arises from consideration of the temperature-jump condition at
the tube wall.
A product solution of equation (52) of the following form is employed
T = X(¥) + R(w) (55)

When this is inserted into equation (52), the solution for T can be written
as

o0

Ta e = ) ep(w)exn(-By) (s6)

m=1

where the B, and R, are the eigenvalues and corresponding eigenfunctions of
the Sturm-Liouville system

a dRm
o <w d—w—> + 2B af (WR, = O (57a)
with the boundary conditions
2 =0 at =20
dw
(57p)

£ m
Rm(l) e 7§.<g§?>w=l

The coefficients cp are evaluated from the boundary condition that
T =1 at the tube entrance (w = 0). Applying this condition to equation (56),

it 1s found that c, must satisfy

00

1= Y epRy(e) (58)

m=1

From the properties of the Sturm-Liouville system, it follows immediately that

1
J/f 2af (w)R,, dw
C = O‘ =
m = 1
/ 2af (w)RE dw
0]

(59)
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The technique used for evaluating the coefficients b, for the parallel-plate
channel (appendix B) is completely applicable here, and it can be shown that
the solution for the coefficients c¢, reduces to

-1
- - 60
‘m OR , , 5t O%R (€0)
Bu\SF & 3 ow),
B=Bp,

The functions Rm(w) and the corresponding eigenvalues By are as yet
undetermined. The analysis will be extended at this point, however, to the
formulation of the quantities of engineering interest. From the temperature
distribution given by equation (56), the axial variation of the gas temperature
adjacent to the wall, the wall heat-flux variation required to maintain the
wall temperature constant, and the Nusselt number variation along the tube
length may be computed from their respective definitions:

%:—: = 2 CoRy(1)exp( B ¥) (1)

wm=1

_ fot
o)

ty - te) -

- - K—(-—;——Z cm<%> exp(-B¥) (62)
0 w=1
m=1
Nu = %%
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RADIAL DISTRIBUTION FUNCTION R(w)

To determine the behavior of equation (57) (at large parameter B), the
method used in solving the parallel-plate system can be adopted practically
unchanged. The results are

cos T + gin T (64)

2 /% g/

/4
)1

R(1) = _\/E (l 1689

and

)3/2 sin T - cos T

(1 - 468)(cos 7 + sin ) ~ 47(46
1/4

(@) =ﬁ(l_+@2) o e
doj 1 40 166 \/Esl/é

(85)

where

1=+ K (66)

VEB + (1 + 48)ein L —E—
K, = I:Zf(w):ll/z AW = e <-Jl+4=9) (67)

1 /1 + 66

0

The eigenvalues are determined from the second boundary condition given in
equation (57b), which requires that

g
") = 2 (%)
w=1

Hence, combining equations (64) and (65) in accordance with this requirement,
the eigenvalues B, are obtained as roots of the characteristic equation

Mty + W

tan T =.ﬁ?;—:jﬁ (68)

where
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, JUNRRET VAT AT

Ty = W/Bm Kl

4(40)3/2 %JE

/46 + (1 + 46)315_.1»(___. ' li ;J ? (69)

M=

£y
Ns4e+(1-4e)—d— J

The values of K; for any given slip velocity us/ﬁ are shown in figure 8.
The eigenvalues and eigenfunctions for the circular-tube problem depend on the
two rarefaction parameters gu/d and

L6 £ /d.

’

From the equations presented so
far, the expressions (BR;Banbl and
., B=p,,
L4 (0“R/dw 3B)yeq can readily be eval-
0 .2 4 .6 .8 Le B=B
Ratio of slip to average velocity, uglu m
uated; however, in the interests of a

Figure 8. - Value of definite integral for circular tube for . . .
any value of ratio of slip fo average velocity. concilse presentatlon, the evaluations
will be omitted here. From the re-

sults, the coefficients ¢, are evaluated from equation (60) as

Value of definite inte-
gral for circular tube
Ky
=

Mt, - N

(70)

40
>1/4= M + N2 + ME7E2
1/5 Tp COS Ty

The slope dR/dw evaluated at the tube wall (eq. (65)) can be alternatively
expressed as

40
Cp = 4 ﬁﬁrjﬁ/4<l T 86

M
£t
1/4 = (Mt - N)

(g&) =- /2 (;_£§§§> Ty COS T d mi/4 - (71)

@=1 ~ By

B=B,
Hence
c, = °m<%> : -166 (72)
w=1 7¥,(N + 3 MTZ)
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Table IIL shows the first four eigenvalues and constants for slip flow in
a clrcular tube. The results for continuum flow (uS/E = 0) are presented in

table IV and were obtained from reference 10. Also shown in table III are the

data obtalned through the use of an IBM 7094 computer by the Runge-Kutta meth-
od. The numerical solutions were carried out in a manner which parallels that

already described for the parallel-plate channel system. It should be noted
that Rm(O) =1 for all m. The asymptotic formula for B, yields values of

sufficient accuracy for m > 2, while the agreement for the various constants
depends on the parameters us/ﬁ and &t/d. The variation of the temperature
of the gas adjacent to the wall along the length of the tube has been evaluated
and plotted in figure 9. The trends are qualitatively similar to those evident
in the parallel-plate channel system.

TABLE III. - EIGENVALUES AND CONSTANTS FOR SLIP FLOW IN TUBE WITH UNIFORM WALL TEMPERATURE

Ratio of slip to average velocity, ug/T’
2/5 2/3
Temperature-jump coefficient, Et/d *
0.1333 0. 5333 0.4 1.6
Solution
Analytical | Numerical | Analytical | Numerical | Analytical | Numerical | Analytical | Numerical
\/Bl 1.373 1.205 1.208 0.8287 1.065 0.9372 0. 7600 0. 5331
\/52 3.260 3.085 2.980 2.750 2.885 2.837 2.695 2.663
‘/33 5.155 5.029 4.905 4.755 4.895 4.882 4.780 4.774
‘/34 7.100 7.008 6.875 6.782 6.975 6.964 6.875 6.887
R (1) . 1840 .2472 . 3740 . 5979 . 5085 . 5472 . 8050 . 8406
Ro(1) -.2340 -.2773 -. 3961 -. 4287 -. 4125 -.4070 -.4520 ~. 4406
Rz(1) . 2581 .2723 . 3485 . 3509 . 3300 . 3252 . 3400 . 3353
Rye(1) -.2588 -.2582 -.3081 -. 3040 -.2780 -.2785 -. 2835 -. 2809
Ry (1) -.6650 -.9273 -. 3480 -.5608 -.6260 -.6838 -.2515 -.2627
Ro(1) 1. 008 1.040 . 3725 . 4019 . 5140 . 5086 . 1445 L1377
Rz(1) | -1.063 -1.021 -.3210 ~. 3290 -. 4170 -. 4062 -.1070 -.1048
Ry(1) 1. 030 . 9682 . 2908 . 2849 . 3480 . 3453 . 0926 . 0878
¢y . 9150 1.408 . 4845 "1.201 . 9595 1.250 .5445 1.079
eq -.4185 -. 6471 -.2282 -.2896 -.3471 -. 3585 -.1050 -.1077
cy . 3300 . 3978 -.1325 .1385 . 1695 .1702 . 0460 . 0442
cy -.2419 -.2738 -. 0825 -.0838 -.1045 -.1041 -. 0259 -.0242
—_
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TABLE IV. - EIGENVALUES AND
COEFFICIENTS FOR CONTINUUM Rarefaction
FLOW IN CTRCULAR TUBE WITH s M para':eter'
IS [~
UNIFORM WALIL TEMPERATURE & \ TT =482
® 8 T
[Data from ref. 10] g N
T N~~~
§. 5 \ \ ~~ -~
‘/ By 1.351 E'L .6 ™~ ~— 1 0667
— \ T3
8= \ 2] ~
1/52 3. 340 53 —~l |
o L}
VEs 5. 337 5 S
‘/54 7. 336 £ ™~
>
2 Accommodation |1 0667
-Cy 1.500 % 2 coefficient, E—
2 a
-Co 1.088 S A
. E - -8 (Continuum flow)
-C3 .9255 = 1 1 ] A i 4 | 1
0 .02 .04 .06 .08 .10
-Ca -8308 Dimensionless axial distance, (x/rg)/RePr
. Figure 9. - Variation of gas temperature adjacent to wall
The wall heat-flux varlation for slip flow in circular tube. Specular reflection co-
. intain the tub efficient, 1; ratio of specific heats, 1.4; Prandtl
required to maintain the tube number, 0.73.

wall temperature constant 1s shown

in figure 10. Increased gas rare-
faction and/or decreased value of accommodation coefficient decrease the heat-

flux requirement, as was the case in the parallel-plate channel system.

The variation in Nusselt number along the tube with a step change in wall
temperature has been evaluated and plotted in figure 11. Also shown are asymp-
totes for the fully developed values (achieved for x - oo). For the values of
the parameter ¢ W/Rgt/pd considered, the Nusselt number for (x/ro)/RePr > 0.10

differs 1little from the fully developed

value.
‘ ' Accom}nodatgon
coefficient, —
Rarefaction a DISCUSSION OF UNIFORM WALL HEAT-FLUX
3[——parameter, _ 1 —
> ¢ T AND UNIFORM WALI-TEMPERATURE
5 ;0 (Continuum flow)
% 2—-°§\ ' RESULTS
2 ~ .
= 2 | It is illuminating to present a qual-
g ! ‘0&7___\\\\‘\\‘§\ itative picture of the uniform wall heat-
T I B e i s e Epmps gy flux and uniform wall-temperature results
= YTttt under slip-flow conditions in order that
0 02 o4 06 .08 10 the significant physical mechanisms and
Dimensionless axial distance, (x/rgliRePr features of gas rarefaction stand out more
Figure 10, - Variation of wall heat flux following step clearly, unobscured by the mathematics.
change in wall temperature for slip flow in circu- To thls end, the results of reference 3
lar tube. Specular reflection coefficient, 1; ratio and the present results are presented and

of specific heats, 1,4; Prandtl number, 0.73. . . . .
b compared in a qualitative fashion.
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o Uniform Wall Heat Flux (Ref. 3)
Accommodation
6 C“ﬁfmm' The longitudinal variation of the
1 bulk temperature, the temperature of the
_—— 4 : gas adJjacent to the wall, and the wall
5 Asymptote for temperature corresponding to a uniform
T Xeeo | heat flux along the duct length is
J Rarefaction sketched in figure lZ(a). With gas rare-
4 ™~ parameter, faction, the wall temperature ty, at a
3 K\\ T ¢ given axial location, is increased above
n \\\\\\ 0 (Continuum flowi— the corresponding continuum-flow value.
é 3 D Then the wall-to-bulk temperature differ-
£ .0667-—+== ence for slip flow (t, - tb)sf is greater
§ than the corresponding difference for con-
=, —L 1 | | |- tinuum flow (&, - tb)cf. Since the
S .2 1 Nusselt modulus Nu dis inversely propor-
- o661 1 | tional to ty - tp, it 1s clear that
1 ' (Nu)sf < (Nu)cf. Hence, the gas rarefac-
A - e tion reduces the Nusselt modulus below
its continuum value at all positions along
0 .02 .04 06 08 10 the duct.

Dimensionless axial distance, (xlro)l.RePr

Figure 11, - Variation of local Nusselt number along tube

for uniform wall temperature. Specular reflection co- Uniform Wall Temperature
efficient, 1; ratio of specific heats, 1.4: Prandtl num-
ber, 0.73.

Figure 12(b) illustrates the longitu-
dinal variation of wall, contiguous gas,
and bulk temperatures along a duct as the result of a step change in wall tem-
perature. In the absence of gas rarefaction, the gas adjacent to the wall
agssumes the wall temperature. With gas rarefaction, t is always less than
ty along the duct length. In addition, the rarefactlion decreases the bulk

q t

PR S 5 N N 2 1 P | S
S V1 L — g ¢
t te
. /-tg (cont;nuum flow) = t,, {continuum flow)
~t,, (slip flow) (ty - tb)ch tg {slip flow)~_
- w ST {ty ~to)sg
-
5
'
2
S
- \//
- 7oty teontinuum flow)
7ty Slip flow)
T (slip flow)
t < ty (continuum flow) = t,, {continuum flow}
hY e_
T tc- ol

Dimensionless axial distance, (x/rgl/RePr or {x/2L)/RePr
{a} Uniform wall heat flux. (b} Uniform wall temperature.

Figure 12. - Longitudinal variation of temperatures.
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temperature below its continuum value at all axial locations along the duct.

Then, since +t,, is constant along the duct length, it is apparent that, as in

the uniform wall heat-flux case, (t, - tp) . is greater than (t, - tb)cf’ and
s

hence (Nu)sf < (Nu)cf. Consequently, for both uniform wall heat flux and uni-
form wall temperature, the Nusselt numbers for slip flow are lower than those
for continuum flowe

CONCLUDING REMARKS

An analysis has been carried out to study laminar, forced-convection heat
transfer to a slightly rarefied gas flowing between parallel plates or in a
circular tube with the conduit walls kept at constant temperature. The wall
heat~-flux requirement and the Nusselt number in both the entrance and fully
developed reglons can be obtained as functions of the mean free path. Asymp-
totic solutions supplyling accurate knowledge of the higher eigenvalues and
important constants are presented. Results are presented graphically, and,
thus, the heat-flux requirements and Nusselt numbers for the conduits can be
determined quickly and easily. A qualitative explanation of rarefaction ef-
feets in which the more important physical aspects of the problem are repre-~
sented has been given.

There are a few final remarks that should be made with reference to the
analyses. More complicated wall boundary conditions than those considered here
could be treated. For example, the parallel-plate chamnel could be treated for
the case of unequal wall temperatures. This would require the determination
of an additional set of eigenvalues and constants, the so~called odd eigencon-
stants (refs. 11 and 12), such that the complete solution to the case of un-
equal wall temperature i1s obtalned by superposing these odd quantities with the
even elgenvalues and constants that have been determined in the present study,
elgenconstants for the case o = 2. At first glance, it might appear that the
results for the present case o= 1 could be also used to obtain the case of
unequal wall temperatures. The adiabatic wall boundary condition (Bt/ay)w =0
for the case o0 = 1, however, produces an axlal temperature variation along
that wall, and hence the boundary conditions of constant, but unequal, wall
temperatures would not be satisfied upon the use of the present case ¢ = 1.
The results for the case of ¢ =1 would be useful, of course, in the consid-
eration of boundary conditions such as constant heat flux on one wall and con-~
stant temperature on the other (ref- 13). The analysis could also be carried
out for other geometries such as the annulus.

Several other, less frequently considered, rarefaction effects have been
cited in the literature. These are wall shear work (ref. 14), modified temper-
ature Jump (ref. 15), and thermal creep velocity (refs. 4 and 5). The modifi-
cation due to each of these additional rarefaction effects of the fully de-
veloped heat-transfer characteristics for laminar flow in tubes has been con-
sidered in reference 1. None of these rarefaction effects have been considered
in the present analyses. The first two slip effects can be incorporated in the
present study without too much difficulty; the basic procedures are illustrated
in reference 1 (for fully developed heat transfer). Further discussion would
add little to what has been sald in reference 1 concerning these effects.
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Inclusion of the thermal creep velocity, however, would give rise to an
extremely complicated mathematical problem, for then the temperature and veloc-
ity fields are mutually interdependent. For example, the slip-flow boundary
conditions for the parallel-plate channel system (egs. (2) and (3) or ref. 3)
must be altered to read, respectively,

y=FL =
LR,
ug = €., %E + 2 ——5'(§E) for o=1
v 0 Y X 0
y=| 2L y=|2L

The second term on the right side of each of these equations represents the
thermal creep effect.

The. thermal creep velocity effect would be expected to moderate the re-
sults given here. A more precilse study that would account for the thermal
creep velocity i1s certainly well in order. The results given here represent
the speclal case when the thermal creep velocity is negligible. From these
results, however, it has been possible to provide a physical interpretation of
the rarefaction effects for different thermal-boundary conditions., In addition,
from the results the design engineer can make a rapid, reasonably accurate
estimation of slight rarefaction effects on heat transfer to gases flowing in
conduits.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohilo, August 25, 1964
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APPENDIX A

SYMBOLS
integration constant, [f(O)]l/4/2
accommodation coefficient
integration constant, [f(O)]l/4/2
coefficient defined by eg. (38)
coefficient in series expansion for parallel-plate channel
coefficient defined by eq. (72)
coefficient in series expansion for circular tube
specific heat of gas
hydraulic diameter for parallel-plate channel, 4L
thermal diameter for parallel-plate channel, 8L/c
tube diameter, Zrg
constant defined by eq. (34)
constant defined by eq. (46)
dimensionless velocity for parallel-plate channel, u(n)/ﬁ
dimensionless velocity for circular tube, u(w)/ﬁ'
specular reflection coefficient
heat~transfer coefficlent, q/(t, - ty)
indefinite integral defined by eq. (29)
definlte integral defined by eq. (33)
indefinite integral defined by eq. (41)
definite integral defined by eq. (45); Jy = I
definite integral defined by eq. (67)
half-distance between plates

mean free path



[}

Nu

o]

oo

o

B

constant defined by egs. (69)
constant defined by egs. (69)

Nusselt number, hDT/K for parallel-plate channel, hd/K for circular
tube

Prandtl number, ucP/K

gas pressure

rate of heat transfer per unit area from wall to gas
radial distribution function for circular tube

gas constant

eigenfunctions of egs. (57)

slope of R(w) at tube wall

Reynolds number, ZDEL/M for parallel-plate channel, Dﬁﬂ/u for circu-
lar tube :

radial coordinate

tube radius

dimensionless temperature difference, (t - tw)/(te - ty,)
gas temperature

temperature of gas adjacent to wall

gas velocity

axial distribution function

axial coordinate

transverse distribution function for parallel-plate channel
eigenfunctions of egs. (11)

slope of Y(n) at heated wall

transverse coordinate

thermal diffusivity, K/ Pep

eigenvalues of eqs. (57)
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w

eigenvalues of egse. (ll)

dimensionless temperature-jump coefficient, gt/ZL
ratio of specific heats

/B Iy

+Bn 91

dimensionless axial distance for parallel-plate channel, OZ(X/ZL)/RePr
dimensionless coordinate, oy/ZL

dimensionless velocity slip coefficierit, éu/d

gas thermal conductivity

dimensionless velocity slip coefficient, gu/ZL
viscosity of gas

temperature-Jjump coefficient

velocity-slip coefficient

gas density

symmetry number

/By Xy

rarefaction parameter, p W/Rgt/ZPL for parallel-plate channel, p 1/Rgt/pd
for circular tube

dimensionless axial distance for circular tube, 4(x/ro)/RePr

dimensionless coordinate, r/ro

Subscripts:

b

cf

32

bulk condition of gas
centerline

continuum flow

fully developed region
entrance, x = 0

slip



sT slip flow

W condition at wall
0 continuum~flow condition
Superscript:

(M) average value
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APPENDIX B

EVALUATION OF SERLES COEFFICLENTS b,

The coefficients of the series expansion (eq. (10)) are determined as the
guotient of two integrals (eq. (13)):

1
/ £(n)Y,(n)dn
0

b, = (BL)

n 1
/ £(n)¥2(n)dn
0

With the use of equation (1lla), the integral appearing in the numerator may be
written as

1 1

2 1
1 a~Y, 1 [daY, 1 dYn
f Y d 2T = — —— d_ = - o | —— = v | e— f _—__.2 1
(T]) n("]) ﬂ Bn 2 T] Bn (dﬂ Bn dn n or o J

since (dYn/dn)n=O = 0.

To evaluate the integral in the denominator of eqguation (BL) s let X,
and Y, be the solutions associated with two distinet values of B, B,, and

B+ This means that

Y+ bt
+ B, f(n)Y, =0
dnz v v
and
s et
—2 4+ B f(1)Y, =0
dﬂz n n

The first equation is multiplied by Y, and the second by Y, and then the
second equation is subtracted from the first. The result, after transposing,

is

a ay, ay,,
(By - BILLE() = - S |Y, 70 - Yy 5
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If this is integrated between O and 1, the following is obtained:

1

ar, ar, \[*
(Bl’l - BV) YVYnf(T])dn = = Y'V E.-T_]— - Yn W (BS)
0 .
0

where Yv(n,Bv) and Yh(ﬂ:Bn) for v f n are orthogonal functions with respect
to the weight function f(n); that is,

1
/ Y, ¥, £(n)dn = O for v #n (Ba)
0

This property of the eigenfunctions was used in obtaining equation (BL).

If By = Bp, the integral on the left side of equation (BS) becomes the
integral of the square of the characteristic function:

axy. dy
(YV 1 _ Y, __J%>
an dn

Y2£(n)dn = - lim —
y-n

1

)

The expression on the right assumes the indeterminate form O/O. Hence, it is
necessary to apply l'Hospital's rule and differentiate numerator and denomina-
tor with respect to B, Dbefore setting B, = B,. Carrying out this differ-
entiation results in

18
1
SY. 3Y aZY dY.,. OY.
2 _[%In Ot = =5 55
0
2 2
o%, 3%
(Yn P n) i (n 3y 5“) e
n=1 =0

Near 1 ~ O, the normalization convention Yh(o) =1 as well as the boundary
condition dY¥,/dn =0 at 7 = 0 reguire that the solution to equation (11)
be given by Y,(n ~ 0) = cos{~/B,£(0) n). Hence, at 7 = O,
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Y (0) =1

2%y, | o

OB on)
Thus, equation (B5) reduces to

1
~ 3T, dY 32y >
2 n n n

and

0

Into this expression, there is now substituted the boundary condition

3 dy.
Yh(l) =0 §%I(E_E>
T

This gives

1
dY £ 32y oYy
£(n)¥4(n)an = (— + 0 5 -———) (— (B7)
n 3B 2L OB on el N Jye
0 B=Bn
Therefore
b = e )
n~—f3 8—Y+GSJ5—82Y (=
n
B 2L OB on -
B=B,

If gt/ZL = 0, that is, if the boundary condition at 1 = 1 is of the
simpler form

Y, (1) =0

the correct solution is obtained by setting Yn(l) = 0 in equation (BS8). This
gives

I

1
2 _ (X oy g
/ £f(n)xs(n)an = (66 an>n=l for = =0 (B9)

0 B=f,
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Therefore

£
1
by = - T for 3, =0 (B10)
B )
B=B,

This result resembles the equation for the continuum-flow coefficients (ref. 7).
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